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Definitions

• A training sample xi consists of m features (xi1, . . . , xim)T and is
associated with output yi .

• Each feature and the output can either be continuous (a number)
or discrete (from a predefined set of values).

• If the output is continuous, we perform regression and if it is
discrete, classification.

• The training set T = (xi , yi) is comprised of n samples
(i = 1, . . . , n).

• Let X indicate a matrix where the i-th row corresponds to the i-th
sample and y = (y1, . . . , yn)T the vector of all outputs.

Sebastian Pölsterl 4 of 44



Problem Statement

Assumption
There is a function f (X) that relates the features xi1, . . . , xim to the
output yi such that y = f (X) for i ∈ {1, . . . , n}.

Goal
We seek to find a good approximation f̂ (X) to the function f (X).
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Linear Models

Definition (Linear Model)
yi = β0 + β1xi1 + . . .+ βmxim + εi = β0 + xT

i β + ε

• The β parameters are
coefficients or weights of the
features.

• βs are to be estimated from
the training data.

• The errors εi are independently
and identically distributed (i.i.d.)
with E(εi) = 0 and
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Linear Models – Coefficients

• Each feature is associated with
one coefficient βj .

• In addition, the coefficient β0
denotes the intercept.

• Estimates are denoted by a hat:
β̂j denotes the estimate of the
coefficient of the j-th feature.

• In the example to the right
β0 = −9.995 (y -intercept) and
β1 = 0.1617 (slope; coefficient
of weight feature).
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Linear Models – Loss Function

Definition (Estimated Function)
f̂ (x1, . . . , xm) = β̂0 + β̂1x1 + . . .+ β̂mxm

• We need a way to assess how
good the output ŷi of our
estimated model f̂ (xi) fits the
expected output yi given the
current estimates of the
coefficients β̂0, . . . , β̂m.

• Hence, define a loss function
L(yi , f̂ (xi)). ●
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Linear Models – Loss Function (Examples)

Squared error loss

(yi − f̂ (xi))2
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Linear Models – Ordinary Least Squares Estimation

Definition (Residual Sum of Squares; RSS)

RSS(β0, . . . , βm) =
n∑

i=1
(yi − f (xi))2

• RSS gives the total loss over the whole training set
• We want to choose the coefficients β0, . . . , βm such that the total
loss according to RSS is minimized.

• How can this be achieved?
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Linear Models – Ordinary Least Squares Estimation

• Set the partial derivative of RSS to zero

∂RSS(β0,β)
∂βj

= −2
n∑

i=1
xij(yi − β0 − xT

i β)

• In matrix notation:

RSS(β) = (y− Xβ)T (y− Xβ) (1)
∂RSS(β)

∂β
= −2XT (y− Xβ). (2)

• Note: β = (β0, . . . , βm)T and the first column of X contains only 1
to accommodate the intercept β0, i.e. X is a n ×m + 1 matrix.
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Linear Models – Ordinary Least Squares Estimation

Definition (Ordinary Least Squares Estimate)

β̂ =
(
XTX

)−1
XTy

• The minimum of the loss function in unique.
• Estimates of the coefficients can be obtained in closed form and
therefore no optimization is required.

• X must have full column rank ⇒ XTX is positive definite.
• Prediction (regression) is performed by

f̂ (x1, . . . , xm) = β̂0 + β̂1x1 + . . .+ β̂mxm
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Classification

• Least squares is a linear model for regression, i.e. the outcome yi is
quantitative.

• We want a linear model for classification, i.e. the outcome yi is
categorial.

• Example: Classify pixels in an image according to the tissue they
represent (e.g. fat, muscle, bone, lung).

• Categories are usually represented by coding them as numbers
(fat = 0, muscle = 1, bone = 2, lung = 3).

• There is a third class where the outcome yi is ordered categorical
such as small, medium, large (not discussed here).
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Logistic Regression

• Consider a binary classification problem where yi ∈ {0, 1}.
• If yi = 1, the i-th sample belongs to the positive class, otherwise
to the negative class.

• Create a model of the probability of sample xi belonging to the
positive class

πi = P(yi = 1|xi1, . . . , xim)

• Remember that the linear model ηi is defined as

ηi = β0 + β1xi1 + . . .+ βmxim

• How to connect the probability πi to the linear predictor ηi?
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Logistic Regression – Response and link function

• Probability πi is connected to
the linear predictor by the
logistic function h(x)

πi = h(ηi) = exp(ηi)
1 + exp(ηi)

• The logistic function is called
response function and its
inverse – the logit function –
link function
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Logistic Regression – Log-Odds

• The model is linear with respect to the log-odds:

πi = exp(ηi)
1 + exp(ηi)

⇔ log
(

πi
1− πi

)
= log P(yi = 1|xi)

P(yi = 0|xi)
= ηi

• Coefficients indicate by how much the odds change when the value
of the corresponding feature is increased by 1

P(yi = 1|xi1, . . .)
P(yi = 0|xi1, . . .)

/
P(yi = 1|xi1 + 1, . . .)
P(yi = 0|xi1 + 1, . . .) = exp(β1)
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Logistic Regression – Log-Odds Ratio

Definition (Log-Odds ratio)
The coefficient βj represents the log-odds ratio of the j-th feature

• βj > 0⇔ Odds increase
• βj < 0⇔ Odds decrease
• βj = 0⇔ Odds remain unchanged
• This becomes very handy to assess which feature has the largest
influence, especially if the goal is to predict which patients are
diseased based on clinical features.
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Logistic Regression – Example

Birth weight data contains data from 189 births to determine which of
these factors were risk factors for low birth weight (< 2.5 kg)
[Hosmer and Lemeshow, 2000].

Feature β / log-odds ratio Chance
(Intercept) 0.924910

Age -0.042784 decreased
Mother’s weight (pounds) -0.015436 decreased

Race = White 0
Race = Black 1.168452 increased
Race = Other 0.814620 increased

Previous premature labour 1.333970 increased
History of hypertension 1.740511 increased

Smoking during pregnancy 0.858332 increased
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Logistic Regression – Maximum Likelihood
Estimation

Definition (Likelihood function)

L(β0,β) =
n∏

i=1
P(yi |xi) =

n∏
i=1

πyi
i (1− πi)1−yi

Definition (Log-Likelihood function)

l(β0,β) =
n∑

i=1
yi log(πi) + (1− yi) log(1− πi)

Definition (Maximum Likelihood Estimate; MLE)

β̂ = argmax
β0,β

l(β0,β)
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Optimal Separating Hyperplanes

• Consider a binary classification
problem where two classes are
optimally separable.

• A lot of hyperplanes solve this
problem but which one is the
best?

• Intuition: the margin
separating both classes has to
be maximized.
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Geometric Margin

β
β0+x

Tβ=0

x

• The linear hyperplane is given by f (x) = β0 + xTβ = 0.
• For any two points x1, x2 ∈ Rm lying on the hyperplane,

(x1 − x2)Tβ = 0 and therefore β is orthogonal to the hyperplane.
• The signed distance of a point xi to the hyperplane is given by

β0 + xT
i β√

βTβ
= β0 + xT

i β

‖β‖
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Optimal Separating Hyperplanes

• The goal is to find a hyperplane
that separates the two classes
and maximises the distance to
the closest point from either
class

M = 1/||β||

β0+xTβ=0

max
β0,β

M

subject to 1
‖β‖

yi(β0 + xT
i β) ≥ M, i = 1, . . . , n
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Optimal Separating Hyperplanes

• Since any scaling of β0 and β
does not change the margin, we
can set ‖β‖ = 1/M and obtain
the convex optimization
problem at the bottom.

M = 1/||β||

β0+xTβ=0

min
β0,β

1
2‖β‖

2

subject to yi(β0 + xT
i β) ≥ 1, i = 1, . . . , n
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Optimal Separating Hyperplanes – Support Points

• The hyperplane is defined by a
linear combination of points
lying on the boundary of the
margin (support points).

• β = XTα, where α ∈ Rn is
estimated by the classifier and
αi = 0 if the i-th sample is not
a support point.

• Hence, the solution only
depends on the support points
not on the whole data set.
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Optimal Separating Hyperplanes – Prediction

• A new sample is classified by

class(xi) = signf̂ (xi)
= sign(β̂0 + xT

i β̂)

• If a sample of the positive class
(yi = 1) is misclassified, then
β0 + β1xi1 + . . .+ βmxim < 0

• The opposite is true if a sample
of the negative class (yi = −1)
is misclassified.
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Support Vector Machines

• Problem: In real-world
applications classes are rarely
separated.

• Usually, two classes overlap in
feature space.

• Idea: Still maximise the margin
but allow for some points to
reside on the wrong side of the
margin (soft margin).

M = 1/||β||

β0+xTβ=0
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Support Vector Machines

• Introduce for each sample a
slack variable ξi ≥ 0 which
gives the relative amount, with
respect to the margin, by which
the prediction falls on the wrong
side of its margin.

• If the point is on the correct
side, ξi = 0.

• Points for which 0 < ξi ≤ 1 lie
between the margin and the
correct side of the margin.

• Misclassification occurs if
ξi > 1.

M = 1/||β||

ξ4

ξ5

ξ2

ξ1

ξ3

β0+xTβ=0
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Support Vector Machines

Definition (SVM Optimization)

min
β0,β

1
2‖β‖

2 + C
n∑

i=1
ξi

subject to ξi ≥ 0, yi(β0 + xT
i β) ≥ 1− ξi

• The parameter C > 0 controls the trade-off between the slack
variable penalty and the margin.

• If C =∞, the result is equal to optimal separating hyperplanes.
•
∑
ξi is an upper bound on the number of misclassified points.
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Support Vector Machines – Examples

C = 10000
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Non-linear SVMs

• Problem: In many applications
the data is not linearly
separable.

• Idea: Find a non-linear mapping
from the input space into a
(higher dimensional) feature
space in which data are
separable.
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Non-linear SVMs – Transformation
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Example: Transform point (x , y) to (x2,
√
2y) where the data can be

separated linearly.
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Non-linear SVMs – Transformation

• Map data from the input space
X ⊆ Rd to feature space
F ⊆ RD using a non-linear
function φ : X → F , where
d ≤ D.

• Therefore, the decision function
becomes f (xi) = β0 + φ(xi)Tβ.

• Example: Transform data from
R2 into R6 using φ and find a
linear hyperplane in the
extended space.
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φ(xi) = (x2
i1, x2

i2,
√
2 · xi1,

√
2 · xi2,

√
2 · xi1 · xi2, 1)T
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Non-linear SVMs – Transformation

• Problem: Explicitly computing the non-linear features requires an
increased amount of memory.

• Remember, β is a linear combination of support points, i.e.
β = XTα and βj =

∑n
i=1 αixij , where αi = 0 if xi is not a

support point.
• The decision function can be formulated as

f (x0) = β0 +
m∑

j=1
x0j βj = β0 +

n∑
i=1

αixT
i x0

• Applying the transformation function φ we obtain

f (x0) = β0 +
n∑

i=1
αiφ(xi)Tφ(x0)
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Non-linear SVMs – Kernel

Definition (Kernel Function)
K (x, x′) = φ(x)Tφ(x′)

Definition (Kernel SVM)

f (x0) = β0 +
n∑

i=1
αiK (xi , x0)

Kernel Trick
• If the Kernel function can be computed efficiently, we can avoid to
explicitly transform the data into the extended feature space.

• No explicit representation of φ is required.
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Kernel Functions

• Linear:
K (x, x′) = xTx′

• d-th degree Polynomial:

K (x, x′) = (xTx′ + c)d

• Radial Basis Function (RBF):

K (x, x′) = exp
(
−γ‖x− x′‖2

)
• Sigmoid:

K (x, x′) = tanh(γ · xTx′ + c)
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Kernel Functions – Examples
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Multi-class SVMs

• SVMs as previously discussed are only applicable to binary
classification problems.

• Idea: Construct multiple binary SVMs to distinguish k > 2 classes
from each other.

• One vs. all: Train k classifiers where the i-th classifier is given the
labels of the i-th class as positives and everything else as negative.

• One vs. One: Train
∑k−1

i=1 i classifiers where each classifier is
trained on samples from the i-th and j-th class, respectively.
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Summary

• Least squares model is simple to construct but yields only good
results if relationship is linear, no outliers and no multicollinearity is
present.

• Logistic regression separates data linearly, yields true probabilities
and the notion of log-odds makes it useful in numerous disciplines
(e.g. medicine, social science). Can be extended to natively support
multiple classes.

• Optimal separating hyperplanes can be applied rarely.
• Support vector machines can be used both for classification and
regression and thanks to the Kernel trick in a wide range of
applications. The best choice of Kernel and its parameters is not
obvious and requires lots of testing.
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