Linear Classifiers and Support Vector Machines

Sebastian Pölsterl

Computer Aided Medical Procedures | Technische Universität München
April 15, 2014

Outline

(1) Introduction
(2) Linear Classifier

1. Ordinary Least Squares
2. Logistic Regression
3. Optimal Separating Hyperplanes
(3) Support Vector Machines
4. Linear SVMs
5. Non-linear SVMs
6. Multi-class SVMs

Definitions

Sample 1 Feature 1 Feature m

Definitions

- A training sample \mathbf{x}_{i} consists of m features $\left(x_{i 1}, \ldots, x_{i m}\right)^{T}$ and is associated with output y_{i}.
- Each feature and the output can either be continuous (a number) or discrete (from a predefined set of values).
- If the output is continuous, we perform regression and if it is discrete, classification.
- The training set $\mathcal{T}=\left(\mathbf{x}_{i}, y_{i}\right)$ is comprised of n samples $(i=1, \ldots, n)$.
- Let \mathbf{X} indicate a matrix where the i-th row corresponds to the i-th sample and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ the vector of all outputs.

Problem Statement

Assumption

There is a function $f(\mathbf{X})$ that relates the features $x_{i 1}, \ldots, x_{i m}$ to the output y_{i} such that $\mathbf{y}=f(\mathbf{X})$ for $i \in\{1, \ldots, n\}$.

Goal

We seek to find a good approximation $\hat{f}(\mathbf{X})$ to the function $f(\mathbf{X})$.
(2) Linear Classifier

1. Ordinary Least Squares
2. Logistic Regression
3. Optimal Separating Hyperplanes
(3) Support Vector Machines
4. Linear SVMs
5. Non-linear SVMs
6. Multi-class SVMs

Linear Models

Definition (Linear Model)

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{m} x_{i m}+\varepsilon_{i}=\beta_{0}+\mathbf{x}_{i}^{\top} \beta+\varepsilon
$$

- The β parameters are coefficients or weights of the features.
- $\beta \mathrm{s}$ are to be estimated from the training data.
- The errors ε_{i} are independently and identically distributed (i.i.d.) with $\mathrm{E}\left(\varepsilon_{i}\right)=0$ and $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$.

Linear Models - Coefficients

- Each feature is associated with one coefficient β_{j}.
- In addition, the coefficient β_{0} denotes the intercept.
- Estimates are denoted by a hat: $\hat{\beta}_{j}$ denotes the estimate of the coefficient of the j-th feature.
- In the example to the right $\beta_{0}=-9.995$ (y-intercept) and $\beta_{1}=0.1617$ (slope; coefficient of weight feature).

Linear Models - Loss Function

Definition (Estimated Function)

$$
\hat{f}\left(x_{1}, \ldots, x_{m}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\ldots+\hat{\beta}_{m} x_{m}
$$

- We need a way to assess how good the output \hat{y}_{i} of our estimated model $\hat{f}\left(\mathbf{x}_{i}\right)$ fits the expected output y_{i} given the current estimates of the coefficients $\hat{\beta}_{0}, \ldots, \hat{\beta}_{m}$.
- Hence, define a loss function $L\left(y_{i}, \hat{f}\left(\mathbf{x}_{i}\right)\right)$.

Linear Models - Loss Function (Examples)

Squared error loss

$$
\left(y_{i}-\hat{f}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Binomial Deviance

$$
\log _{2}\left(1+e^{-y_{i} \hat{f}\left(\mathbf{x}_{i}\right)}\right)
$$

Hinge loss

$$
\max \left(0,1-y_{i} \cdot \hat{f}\left(\mathbf{x}_{i}\right)\right)
$$

0-1 loss

$$
I\left(y_{i} \neq \hat{f}\left(\mathbf{x}_{i}\right)\right)
$$

Linear Models - Ordinary Least Squares Estimation

Definition (Residual Sum of Squares; RSS)

$$
\operatorname{RSS}\left(\beta_{0}, \ldots, \beta_{m}\right)=\sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- RSS gives the total loss over the whole training set
- We want to choose the coefficients $\beta_{0}, \ldots, \beta_{m}$ such that the total loss according to RSS is minimized.
- How can this be achieved?

Linear Models - Ordinary Least Squares Estimation

- Set the partial derivative of RSS to zero

$$
\frac{\partial \operatorname{RSS}\left(\beta_{0}, \boldsymbol{\beta}\right)}{\partial \beta_{j}}=-2 \sum_{i=1}^{n} x_{i j}\left(y_{i}-\beta_{0}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)
$$

- In matrix notation:

$$
\begin{align*}
\operatorname{RSS}(\boldsymbol{\beta}) & =(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \tag{1}\\
\frac{\partial \operatorname{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} & =-2 \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \tag{2}
\end{align*}
$$

- Note: $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{m}\right)^{T}$ and the first column of \mathbf{X} contains only 1 to accommodate the intercept β_{0}, i.e. \mathbf{X} is a $n \times m+1$ matrix.

Linear Models - Ordinary Least Squares Estimation

Definition (Ordinary Least Squares Estimate)

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- The minimum of the loss function in unique.
- Estimates of the coefficients can be obtained in closed form and therefore no optimization is required.
- \mathbf{X} must have full column rank $\Rightarrow \mathbf{X}^{T} \mathbf{X}$ is positive definite.
- Prediction (regression) is performed by

$$
\hat{f}\left(x_{1}, \ldots, x_{m}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\ldots+\hat{\beta}_{m} x_{m}
$$

(2) Linear Classifier

1. Ordinary Least Squares
2. Logistic Regression
3. Optimal Separating Hyperplanes
(3) Support Vector Machines
4. Linear SVMs
5. Non-linear SVMs
6. Multi-class SVMs

Classification

- Least squares is a linear model for regression, i.e. the outcome y_{i} is quantitative.
- We want a linear model for classification, i.e. the outcome y_{i} is categorial.
- Example: Classify pixels in an image according to the tissue they represent (e.g. fat, muscle, bone, lung).
- Categories are usually represented by coding them as numbers (fat $=0$, muscle $=1$, bone $=2$, lung $=3$).
- There is a third class where the outcome y_{i} is ordered categorical such as small, medium, large (not discussed here).

Logistic Regression

- Consider a binary classification problem where $y_{i} \in\{0,1\}$.
- If $y_{i}=1$, the i-th sample belongs to the positive class, otherwise to the negative class.
- Create a model of the probability of sample \mathbf{x}_{i} belonging to the positive class

$$
\pi_{i}=P\left(y_{i}=1 \mid x_{i 1}, \ldots, x_{i m}\right)
$$

- Remember that the linear model η_{i} is defined as

$$
\eta_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{m} x_{i m}
$$

- How to connect the probability π_{i} to the linear predictor η_{i} ?

Logistic Regression - Response and link function

- Probability π_{i} is connected to the linear predictor by the logistic function $h(x)$

$$
\pi_{i}=h\left(\eta_{i}\right)=\frac{\exp \left(\eta_{i}\right)}{1+\exp \left(\eta_{i}\right)}
$$

- The logistic function is called response function and its inverse - the logit function link function

$$
h^{-1}(x)=\log \left(\frac{x}{1-x}\right)
$$

Logistic Regression - Log-Odds

- The model is linear with respect to the log-odds:

$$
\pi_{i}=\frac{\exp \left(\eta_{i}\right)}{1+\exp \left(\eta_{i}\right)} \Leftrightarrow \log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\log \frac{P\left(y_{i}=1 \mid \mathbf{x}_{i}\right)}{P\left(y_{i}=0 \mid \mathbf{x}_{i}\right)}=\eta_{i}
$$

- Coefficients indicate by how much the odds change when the value of the corresponding feature is increased by 1

$$
\frac{P\left(y_{i}=1 \mid x_{i 1}, \ldots\right)}{P\left(y_{i}=0 \mid x_{i 1}, \ldots\right)} / \frac{P\left(y_{i}=1 \mid x_{i 1}+1, \ldots\right)}{P\left(y_{i}=0 \mid x_{i 1}+1, \ldots\right)}=\exp \left(\beta_{1}\right)
$$

Logistic Regression - Log-Odds Ratio

Definition (Log-Odds ratio)

The coefficient β_{j} represents the log-odds ratio of the j-th feature

- $\beta_{j}>0 \Leftrightarrow$ Odds increase
- $\beta_{j}<0 \Leftrightarrow$ Odds decrease
- $\beta_{j}=0 \Leftrightarrow$ Odds remain unchanged
- This becomes very handy to assess which feature has the largest influence, especially if the goal is to predict which patients are diseased based on clinical features.

Logistic Regression - Example

Birth weight data contains data from 189 births to determine which of these factors were risk factors for low birth weight ($<2.5 \mathrm{~kg}$) [Hosmer and Lemeshow, 2000].

Feature	$\beta /$ log-odds ratio	Chance
(Intercept)	0.924910	
Age	-0.042784	decreased
Mother's weight (pounds)	-0.015436	decreased
Race $=$ White	0	
Race $=$ Black	1.168452	increased
Race $=$ Other	0.814620	increased
Previous premature labour	1.333970	increased
History of hypertension	1.740511	increased
Smoking during pregnancy	0.858332	increased

Logistic Regression - Maximum Likelihood Estimation

Definition (Likelihood function)

$$
L\left(\beta_{0}, \boldsymbol{\beta}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid \mathbf{x}_{i}\right)=\prod_{i=1}^{n} \pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}}
$$

Definition (Log-Likelihood function)

$$
I\left(\beta_{0}, \beta\right)=\sum_{i=1}^{n} y_{i} \log \left(\pi_{i}\right)+\left(1-y_{i}\right) \log \left(1-\pi_{i}\right)
$$

Definition (Maximum Likelihood Estimate; MLE)

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\beta_{0}, \boldsymbol{\beta}} I\left(\beta_{0}, \boldsymbol{\beta}\right)
$$

(2) Linear Classifier

1. Ordinary Least Squares
2. Logistic Regression
3. Optimal Separating Hyperplanes
(3) Support Vector Machines
4. Linear SVMs
5. Non-linear SVMs
6. Multi-class SVMs

Optimal Separating Hyperplanes

- Consider a binary classification problem where two classes are optimally separable.
- A lot of hyperplanes solve this problem but which one is the best?
- Intuition: the margin separating both classes has to be maximized.

Geometric Margin

- The linear hyperplane is given by $f(\mathbf{x})=\beta_{0}+\mathbf{x}^{\top} \boldsymbol{\beta}=0$.
- For any two points $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{m}$ lying on the hyperplane, $\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} \beta=0$ and therefore β is orthogonal to the hyperplane.
- The signed distance of a point \mathbf{x}_{i} to the hyperplane is given by

$$
\frac{\beta_{0}+\mathbf{x}_{i}^{T} \boldsymbol{\beta}}{\sqrt{\boldsymbol{\beta}^{T} \boldsymbol{\beta}}}=\frac{\beta_{0}+\mathbf{x}_{i}^{T} \boldsymbol{\beta}}{\|\boldsymbol{\beta}\|}
$$

Optimal Separating Hyperplanes

- The goal is to find a hyperplane that separates the two classes and maximises the distance to the closest point from either class

$$
\begin{gathered}
\max _{\beta_{0}, \boldsymbol{\beta}} M \\
\text { subject to } \frac{1}{\|\boldsymbol{\beta}\|} y_{i}\left(\beta_{0}+\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right) \geq M, \quad i=1, \ldots, n
\end{gathered}
$$

Optimal Separating Hyperplanes

- Since any scaling of β_{0} and β does not change the margin, we can set $\|\boldsymbol{\beta}\|=1 / M$ and obtain the convex optimization problem at the bottom.

$$
\min _{\beta_{0}, \beta} \frac{1}{2}\|\boldsymbol{\beta}\|^{2}
$$

subject to $y_{i}\left(\beta_{0}+\mathbf{x}_{i}^{T} \beta\right) \geq 1, \quad i=1, \ldots, n$

Optimal Separating Hyperplanes - Support Points

- The hyperplane is defined by a linear combination of points lying on the boundary of the margin (support points).
- $\boldsymbol{\beta}=\mathbf{X}^{T} \boldsymbol{\alpha}$, where $\boldsymbol{\alpha} \in \mathbb{R}^{n}$ is estimated by the classifier and $\alpha_{i}=0$ if the i-th sample is not a support point.
- Hence, the solution only depends on the support points not on the whole data set.

Optimal Separating Hyperplanes - Prediction

- A new sample is classified by

$$
\begin{aligned}
\operatorname{class}\left(\mathbf{x}_{i}\right) & =\operatorname{sign} \hat{f}\left(\mathbf{x}_{i}\right) \\
& =\operatorname{sign}\left(\hat{\beta}_{0}+\mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}\right)
\end{aligned}
$$

- If a sample of the positive class $\left(y_{i}=1\right)$ is misclassified, then $\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{m} x_{i m}<0$
- The opposite is true if a sample of the negative class $\left(y_{i}=-1\right)$ is misclassified.

(1) Introduction

(2) Linear Classifier

1. Ordinary Least Squares
2. Logistic Regression
3. Optimal Separating Hyperplanes
(3) Support Vector Machines
4. Linear SVMs
5. Non-linear SVMs
6. Multi-class SVMs

Support Vector Machines

- Problem: In real-world applications classes are rarely separated.
- Usually, two classes overlap in feature space.
- Idea: Still maximise the margin but allow for some points to reside on the wrong side of the margin (soft margin).

Support Vector Machines

- Introduce for each sample a slack variable $\xi_{i} \geq 0$ which gives the relative amount, with respect to the margin, by which the prediction falls on the wrong side of its margin.
- If the point is on the correct side, $\xi_{i}=0$.
- Points for which $0<\xi_{i} \leq 1$ lie between the margin and the correct side of the margin.
- Misclassification occurs if

$\xi_{i}>1$.

Support Vector Machines

Definition (SVM Optimization)

$$
\min _{\beta_{0}, \boldsymbol{\beta}} \frac{1}{2}\|\boldsymbol{\beta}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

subject to $\xi_{i} \geq 0, y_{i}\left(\beta_{0}+\mathbf{x}_{i}^{T} \beta\right) \geq 1-\xi_{i}$

- The parameter $C>0$ controls the trade-off between the slack variable penalty and the margin.
- If $C=\infty$, the result is equal to optimal separating hyperplanes.
- $\sum \xi_{i}$ is an upper bound on the number of misclassified points.

Support Vector Machines - Examples

$C=1$

Non-linear SVMs

- Problem: In many applications the data is not linearly separable.
- Idea: Find a non-linear mapping from the input space into a (higher dimensional) feature space in which data are separable.

Non-linear SVMs - Transformation

Example: Transform point (x, y) to $\left(x^{2}, \sqrt{2} y\right)$ where the data can be separated linearly.

Non-linear SVMs - Transformation

- Map data from the input space $\mathcal{X} \subseteq \mathbb{R}^{d}$ to feature space $\mathcal{F} \subseteq \mathbb{R}^{D}$ using a non-linear function $\phi: \mathcal{X} \rightarrow \mathcal{F}$, where $d \leq D$.
- Therefore, the decision function becomes $f\left(\mathbf{x}_{i}\right)=\beta_{0}+\phi\left(\mathbf{x}_{i}\right)^{T} \beta$.
- Example: Transform data from \mathbb{R}^{2} into \mathbb{R}^{6} using ϕ and find a linear hyperplane in the
 extended space.

$$
\phi\left(\mathbf{x}_{i}\right)=\left(x_{i 1}^{2}, x_{i 2}^{2}, \sqrt{2} \cdot x_{i 1}, \sqrt{2} \cdot x_{i 2}, \sqrt{2} \cdot x_{i 1} \cdot x_{i 2}, 1\right)^{T}
$$

Non-linear SVMs - Transformation

- Problem: Explicitly computing the non-linear features requires an increased amount of memory.
- Remember, β is a linear combination of support points, i.e. $\boldsymbol{\beta}=\mathbf{X}^{\top} \boldsymbol{\alpha}$ and $\beta_{j}=\sum_{i=1}^{n} \alpha_{i} x_{i j}$, where $\alpha_{i}=0$ if \mathbf{x}_{i} is not a support point.
- The decision function can be formulated as

$$
f\left(\mathbf{x}_{0}\right)=\beta_{0}+\sum_{j=1}^{m} x_{0 j} \beta_{j}=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{0}
$$

- Applying the transformation function ϕ we obtain

$$
f\left(\mathbf{x}_{0}\right)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{0}\right)
$$

Non-linear SVMs - Kernel

Definition (Kernel Function)

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x})^{T} \phi\left(\mathbf{x}^{\prime}\right)
$$

Definition (Kernel SVM)

$$
f\left(\mathbf{x}_{0}\right)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{0}\right)
$$

Kernel Trick

- If the Kernel function can be computed efficiently, we can avoid to explicitly transform the data into the extended feature space.
- No explicit representation of ϕ is required.

Kernel Functions

- Linear:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{x}^{\prime}
$$

- d-th degree Polynomial:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}+c\right)^{d}
$$

- Radial Basis Function (RBF):

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)
$$

- Sigmoid:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\tanh \left(\gamma \cdot \mathbf{x}^{T} \mathbf{x}^{\prime}+c\right)
$$

Kernel Functions - Examples

Multi-class SVMs

- SVMs as previously discussed are only applicable to binary classification problems.
- Idea: Construct multiple binary SVMs to distinguish $k>2$ classes from each other.
- One vs. all: Train k classifiers where the i-th classifier is given the labels of the i-th class as positives and everything else as negative.
- One vs. One: Train $\sum_{i=1}^{k-1} i$ classifiers where each classifier is trained on samples from the i-th and j-th class, respectively.

Summary

- Least squares model is simple to construct but yields only good results if relationship is linear, no outliers and no multicollinearity is present.
- Logistic regression separates data linearly, yields true probabilities and the notion of log-odds makes it useful in numerous disciplines (e.g. medicine, social science). Can be extended to natively support multiple classes.
- Optimal separating hyperplanes can be applied rarely.
- Support vector machines can be used both for classification and regression and thanks to the Kernel trick in a wide range of applications. The best choice of Kernel and its parameters is not obvious and requires lots of testing.

References (1)

Ben-Hur, A. and Weston, J. (2009).
A user's guide to support vector machines.
In Data Mining Techniques for the Life Sciences. Springer.
http://www.cs.colostate.edu/~asa/pdfs/howto.pdf.
國 Bishop, C. M. (2006).
Pattern Recognition and Machine Learning.
Springer.
http://research.microsoft.com/~cmbishop/PRML.
R Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning.
Springer, second edition.
http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

References (2)

國 Hosmer, D. W. and Lemeshow, S. (2000).
Applied Logistic Regression.
John Wiley \& Sons, second edition.

