Linear Classifiers and Support Vector Machines

Sebastian Pölsterl

Computer Aided Medical Procedures | Technische Universität München

April 15, 2014

Outline

1 Introduction

2 Linear Classifier

- 1. Ordinary Least Squares
- 2. Logistic Regression
- 3. Optimal Separating Hyperplanes

- 1. Linear SVMs
- 2. Non-linear SVMs
- 3. Multi-class SVMs

Definitions

Definitions

- A training sample x_i consists of *m* features $(x_{i1}, \ldots, x_{im})^T$ and is associated with **output** y_i .
- Each feature and the output can either be **continuous** (a number) or **discrete** (from a predefined set of values).
- If the output is continuous, we perform regression and if it is discrete, classification.
- The **training set** $T = (\mathbf{x}_i, y_i)$ is comprised of *n* samples (i = 1, ..., n).
- Let **X** indicate a matrix where the *i*-th row corresponds to the *i*-th sample and $\mathbf{y} = (y_1, \dots, y_n)^T$ the vector of all outputs.

Problem Statement

Assumption

There is a function $f(\mathbf{X})$ that relates the features x_{i1}, \ldots, x_{im} to the output y_i such that $\mathbf{y} = f(\mathbf{X})$ for $i \in \{1, \ldots, n\}$.

Goal

We seek to find a good approximation $\hat{f}(\mathbf{X})$ to the function $f(\mathbf{X})$.

1 Introduction

2 Linear Classifier

- 1. Ordinary Least Squares
- 2. Logistic Regression
- 3. Optimal Separating Hyperplanes

- 1. Linear SVMs
- 2. Non-linear SVMs
- 3. Multi-class SVMs

Linear Models

Definition (Linear Model)

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_m x_{im} + \varepsilon_i = \beta_0 + \mathbf{x}_i^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

- The β parameters are coefficients or weights of the features.
- *β*s are to be **estimated** from the training data.
- The errors ε_i are independently and identically distributed (i.i.d.) with E(ε_i) = 0 and Var(ε_i) = σ².

Linear Models – Coefficients

- Each feature is associated with one coefficient β_j.
- In addition, the coefficient β₀ denotes the intercept.
- Estimates are denoted by a hat:
 β̂_j denotes the estimate of the coefficient of the *j*-th feature.
- In the example to the right $\beta_0 = -9.995$ (y-intercept) and $\beta_1 = 0.1617$ (slope; coefficient of weight feature).

Linear Models – Loss Function

Definition (Estimated Function)

$$\hat{f}(x_1,\ldots,x_m) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_m x_m$$

- We need a way to assess how good the output ŷ_i of our estimated model f̂(x_i) fits the expected output y_i given the current estimates of the coefficients β̂₀,..., β̂_m.
- Hence, define a loss function $L(y_i, \hat{f}(\mathbf{x}_i))$.

Linear Models – Loss Function (Examples)

Squared error loss

$$(y_i - \hat{f}(\mathbf{x}_i))^2$$

Binomial Deviance

$$\log_2\left(1+e^{-y_i\hat{f}(\mathsf{x}_i)}\right)$$

Hinge loss

$$\max(0,1-y_i\cdot\hat{f}(\mathbf{x}_i))$$

0-1 loss

$$I(y_i \neq \hat{f}(\mathbf{x}_i))$$

Linear Models – Ordinary Least Squares Estimation

Definition (Residual Sum of Squares; RSS)

$$\operatorname{RSS}(\beta_0,\ldots,\beta_m)=\sum_{i=1}^n(y_i-f(\mathbf{x}_i))^2$$

- RSS gives the total loss over the whole training set
- We want to choose the coefficients β₀,..., β_m such that the total loss according to RSS is minimized.
- How can this be achieved?

Linear Models – Ordinary Least Squares Estimation

• Set the partial derivative of RSS to zero

$$\frac{\partial \text{RSS}(\beta_0, \boldsymbol{\beta})}{\partial \beta_j} = -2\sum_{i=1}^n x_{ij}(y_i - \beta_0 - \mathbf{x}_i^T \boldsymbol{\beta})$$

• In matrix notation:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$
(1)

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$
(2)

Note: β = (β₀,..., β_m)^T and the first column of X contains only 1 to accommodate the intercept β₀, i.e. X is a n × m + 1 matrix.

Linear Models – Ordinary Least Squares Estimation

Definition (Ordinary Least Squares Estimate)

$$\hat{oldsymbol{eta}} = \left(\mathbf{X}^{ op} \mathbf{X}
ight)^{-1} \mathbf{X}^{ op} \mathbf{y}$$
 ,

- The minimum of the loss function in unique.
- Estimates of the coefficients can be obtained in closed form and therefore no optimization is required.
- **X** must have full column rank \Rightarrow **X**^T**X** is positive definite.
- Prediction (regression) is performed by

$$\hat{f}(x_1,\ldots,x_m) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_m x_m$$

1 Introduction

2 Linear Classifier

- 1. Ordinary Least Squares
- 2. Logistic Regression
- 3. Optimal Separating Hyperplanes

- 1. Linear SVMs
- 2. Non-linear SVMs
- 3. Multi-class SVMs

Classification

- Least squares is a linear model for **regression**, i.e. the outcome y_i is **quantitative**.
- We want a linear model for **classification**, i.e. the outcome y_i is **categorial**.
- **Example**: Classify pixels in an image according to the tissue they represent (e.g. fat, muscle, bone, lung).
- Categories are usually represented by coding them as numbers (fat = 0, muscle = 1, bone = 2, lung = 3).
- There is a third class where the outcome y_i is **ordered categorical** such as *small, medium, large* (not discussed here).

Logistic Regression

- Consider a binary classification problem where $y_i \in \{0, 1\}$.
- If $y_i = 1$, the *i*-th sample belongs to the **positive class**, otherwise to the **negative class**.
- Create a model of the probability of sample **x**_i belonging to the positive class

$$\pi_i = P(y_i = 1 | x_{i1}, \ldots, x_{im})$$

• Remember that the linear model η_i is defined as

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_m x_{im}$$

• How to connect the probability π_i to the linear predictor η_i ?

Logistic Regression – Response and link function

 Probability π_i is connected to the linear predictor by the logistic function h(x)

$$\pi_i = h(\eta_i) = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)}$$

 The logistic function is called response function and its inverse – the logit function – link function

$$h^{-1}(x) = \log\left(\frac{x}{1-x}\right)$$

Logistic Regression – Log-Odds

• The model is linear with respect to the log-odds:

$$\pi_i = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)} \Leftrightarrow \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\frac{P(y_i = 1 | \mathbf{x}_i)}{P(y_i = 0 | \mathbf{x}_i)} = \eta_i$$

• Coefficients indicate by how much the odds change when the value of the corresponding feature is increased by 1

$$\frac{P(y_i = 1 | x_{i1}, \ldots)}{P(y_i = 0 | x_{i1}, \ldots)} / \frac{P(y_i = 1 | x_{i1} + 1, \ldots)}{P(y_i = 0 | x_{i1} + 1, \ldots)} = \exp(\beta_1)$$

Logistic Regression – Log-Odds Ratio

Definition (Log-Odds ratio)

The coefficient β_j represents the **log-odds ratio** of the *j*-th feature

- $\beta_j > 0 \Leftrightarrow \text{Odds increase}$
- $\beta_j < 0 \Leftrightarrow \text{Odds decrease}$
- $\beta_j = 0 \Leftrightarrow \text{Odds remain unchanged}$
- This becomes very handy to assess which feature has the largest influence, especially if the goal is to predict which patients are diseased based on clinical features.

Logistic Regression – Example

Birth weight data contains data from 189 births to determine which of these factors were risk factors for low birth weight (< 2.5 kg) [Hosmer and Lemeshow, 2000].

Feature	β / log-odds ratio	Chance
(Intercept)	0.924910	
Age	-0.042784	decreased
Mother's weight (pounds)	-0.015436	decreased
Race = White	0	
Race = Black	1.168452	increased
Race = Other	0.814620	increased
Previous premature labour	1.333970	increased
History of hypertension	1.740511	increased
Smoking during pregnancy	0.858332	increased

Logistic Regression – Maximum Likelihood Estimation

Definition (Likelihood function)

$$L(\beta_0,\beta) = \prod_{i=1}^n P(y_i | \mathbf{x}_i) = \prod_{i=1}^n \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

Definition (Log-Likelihood function)

$$I(\beta_0, \beta) = \sum_{i=1}^n y_i \log(\pi_i) + (1 - y_i) \log(1 - \pi_i)$$

Definition (Maximum Likelihood Estimate; MLE)

$$\hat{oldsymbol{eta}} = rg\max_{eta_{0},oldsymbol{eta}} I(eta_{0},oldsymbol{eta})$$

1 Introduction

2 Linear Classifier

- 1. Ordinary Least Squares
- 2. Logistic Regression
- 3. Optimal Separating Hyperplanes

- 1. Linear SVMs
- 2. Non-linear SVMs
- 3. Multi-class SVMs

Optimal Separating Hyperplanes

- Consider a binary classification problem where two classes are optimally separable.
- A lot of hyperplanes solve this problem but which one is the best?
- Intuition: the margin separating both classes has to be maximized.

Geometric Margin

- The linear hyperplane is given by $f(\mathbf{x}) = \beta_0 + \mathbf{x}^T \boldsymbol{\beta} = 0$.
- For any two points $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^m$ lying on the hyperplane, $(\mathbf{x}_1 - \mathbf{x}_2)^T \beta = 0$ and therefore β is orthogonal to the hyperplane.
- The signed distance of a point \mathbf{x}_i to the hyperplane is given by

$$\frac{\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}}{\sqrt{\boldsymbol{\beta}^T \boldsymbol{\beta}}} = \frac{\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}}{\|\boldsymbol{\beta}\|}$$

Optimal Separating Hyperplanes

 The goal is to find a hyperplane that separates the two classes and maximises the distance to the closest point from either class

subject to
$$rac{\max_{eta_0,eta}M}{\|eta\|}y_i(eta_0+\mathbf{x}_i^{\mathsf{T}}oldsymbol{eta})\geq M,\quad i=1,\ldots,n$$

Optimal Separating Hyperplanes

• Since any scaling of β_0 and β does not change the margin, we can set $\|\beta\| = 1/M$ and obtain the **convex** optimization problem at the bottom.

Optimal Separating Hyperplanes – Support Points

- The hyperplane is defined by a **linear combination** of points lying on the boundary of the margin (**support points**).
- β = X^Tα, where α ∈ ℝⁿ is estimated by the classifier and α_i = 0 if the *i*-th sample is **not** a support point.
- Hence, the solution only depends on the support points not on the whole data set.

Optimal Separating Hyperplanes – Prediction

• A new sample is classified by

$$\begin{aligned} \text{class}(\mathbf{x}_i) &= \text{sign}\hat{f}(\mathbf{x}_i) \\ &= \text{sign}(\hat{\beta}_0 + \mathbf{x}_i^T \hat{\beta}) \end{aligned}$$

- If a sample of the positive class $(y_i = 1)$ is misclassified, then $\beta_0 + \beta_1 x_{i1} + \ldots + \beta_m x_{im} < 0$
- The opposite is true if a sample of the negative class (y_i = −1) is misclassified.

1 Introduction

2 Linear Classifier

- 1. Ordinary Least Squares
- 2. Logistic Regression
- 3. Optimal Separating Hyperplanes

- 1. Linear SVMs
- 2. Non-linear SVMs
- 3. Multi-class SVMs

- **Problem**: In real-world applications classes are rarely separated.
- Usually, two classes **overlap** in feature space.
- Idea: Still maximise the margin but allow for some points to reside on the wrong side of the margin (soft margin).

- Introduce for each sample a **slack variable** $\xi_i \ge 0$ which gives the relative amount, with respect to the margin, by which the prediction falls on the wrong side of its margin.
- If the point is on the correct side, $\xi_i = 0$.
- Points for which 0 < ξ_i ≤ 1 lie between the margin and the correct side of the margin.
- Misclassification occurs if ξ_i > 1.

Support Vector Machines

Definition (SVM Optimization)

$$\begin{split} \min_{\beta_0,\beta} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to } \xi_i \geq 0, \ y_i (\beta_0 + \mathbf{x}_i^T \beta) \geq 1 - \xi_i \end{split}$$

- The parameter C > 0 controls the trade-off between the slack variable penalty and the margin.
- If $C = \infty$, the result is equal to *optimal separating hyperplanes*.
- $\sum \xi_i$ is an upper bound on the number of misclassified points.

Support Vector Machines – Examples

Non-linear SVMs

- **Problem**: In many applications the data is not **linearly separable**.
- Idea: Find a non-linear mapping from the input space into a (higher dimensional) feature space in which data are separable.

Non-linear SVMs – Transformation

Example: Transform point (x, y) to $(x^2, \sqrt{2}y)$ where the data can be separated linearly.

Non-linear SVMs – Transformation

- Map data from the input space $\mathcal{X} \subseteq \mathbb{R}^d$ to feature space $\mathcal{F} \subseteq \mathbb{R}^D$ using a **non-linear** function $\phi : \mathcal{X} \to \mathcal{F}$, where $d \leq D$.
- Therefore, the decision function becomes f(x_i) = β₀ + φ(x_i)^Tβ.
- **Example**: Transform data from \mathbb{R}^2 into \mathbb{R}^6 using ϕ and find a linear hyperplane in the extended space.

$$\phi(\mathbf{x}_i) = (x_{i1}^2, x_{i2}^2, \sqrt{2} \cdot x_{i1}, \sqrt{2} \cdot x_{i2}, \sqrt{2} \cdot x_{i1} \cdot x_{i2}, 1)^T$$

Non-linear SVMs – Transformation

- **Problem**: Explicitly computing the non-linear features requires an increased amount of memory.
- Remember, β is a linear combination of support points, i.e. $\beta = \mathbf{X}^T \alpha$ and $\beta_j = \sum_{i=1}^n \alpha_i x_{ij}$, where $\alpha_i = 0$ if \mathbf{x}_i is not a support point.
- The decision function can be formulated as

$$f(\mathbf{x}_0) = \beta_0 + \sum_{j=1}^m x_{0j} \frac{\beta_j}{\beta_j} = \beta_0 + \sum_{i=1}^n \alpha_i \mathbf{x}_i^T \mathbf{x}_0$$

• Applying the transformation function ϕ we obtain

$$f(\mathbf{x}_0) = \beta_0 + \sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_0)$$

Non-linear SVMs – Kernel

Definition (Kernel Function)

$$K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$$

Definition (Kernel SVM)

$$f(\mathbf{x}_0) = \beta_0 + \sum_{i=1}^n \alpha_i \mathcal{K}(\mathbf{x}_i, \mathbf{x}_0)$$

Kernel Trick

- If the Kernel function can be computed efficiently, we can avoid to explicitly transform the data into the extended feature space.
- No explicit representation of ϕ is required.

Kernel Functions

• Linear:

$$K(\mathbf{x},\mathbf{x}')=\mathbf{x}^{\mathsf{T}}\mathbf{x}'$$

• *d*-th degree Polynomial:

$$K(\mathbf{x},\mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$$

• Radial Basis Function (RBF):

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

• Sigmoid:

$$K(\mathbf{x}, \mathbf{x}') = \tanh(\gamma \cdot \mathbf{x}^T \mathbf{x}' + c)$$

Kernel Functions – Examples

Multi-class SVMs

- SVMs as previously discussed are only applicable to binary classification problems.
- Idea: Construct multiple binary SVMs to distinguish k > 2 classes from each other.
- **One vs. all**: Train k classifiers where the *i*-th classifier is given the labels of the *i*-th class as positives and everything else as negative.
- One vs. One: Train ∑^{k-1}_{i=1} i classifiers where each classifier is trained on samples from the *i*-th and *j*-th class, respectively.

Summary

- Least squares model is simple to construct but yields only good results if relationship is linear, no outliers and no multicollinearity is present.
- Logistic regression separates data linearly, yields true probabilities and the notion of log-odds makes it useful in numerous disciplines (e.g. medicine, social science). Can be extended to natively support multiple classes.
- Optimal separating hyperplanes can be applied rarely.
- **Support vector machines** can be used both for classification and regression and thanks to the Kernel trick in a wide range of applications. The best choice of Kernel and its parameters is not obvious and requires lots of testing.

References (1)

Ben-Hur, A. and Weston, J. (2009).
 A user's guide to support vector machines.
 In Data Mining Techniques for the Life Sciences. Springer.
 http://www.cs.colostate.edu/~asa/pdfs/howto.pdf.

Bishop, C. M. (2006).

Pattern Recognition and Machine Learning. Springer. http://research.microsoft.com/~cmbishop/PRML.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
 The Elements of Statistical Learning.
 Springer, second edition.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

References (2)

Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic Regression. John Wiley & Sons, second edition.

