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Cognitive Decline in Alzheimer’s Disease
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• Goal: Understand the causal effect of regional atrophy on cognition.
• The causal effect is the change in cognition when setting the hippocampus volume to x.
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Causal Inference

• Standard machine learning usually does not provide estimates
of causal effects. It provides estimates for

P (ADAS |Hipp = x)

=
∫
age

P (ADAS |Hipp = x, age)P (age) dage

Age

Hipp ADAS

Observed distribution

• Causal inference is about prediction under intervention:

P (ADAS | do(Hipp = x)) 6= P (ADAS |Hipp = x)

Age

Hipp=x ADAS

Interventional distribution
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Answering Causal Questions

• The gold standard to answer a causal question is a randomized
experiment.
⇒ Impossible in neuroimaging.

• Need to resort to observational data and making untestable
assumptions about the data-generating process.

• In particular, no unmeasured confounder.
• Alfaro-Almagro et al. (2021) identified hundreds of potential
confounders just related to the image acquisition.

• Identifiability: Can the post-intervention distribution be
estimated from the observed data?
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Prior Work

• Assumes that all confounding variables are known and have been measured.
• To account for observed confounders, use
◦ Regress-out
◦ Inverse Propensity Score Weighting

S. Pölsterl and C. Wachinger (AI-Med) Estimation of Causal Effects in the Alzheimer’s Continuum 5 of 26



Regress-Out

• For j-th measurement, estimate regression model using observed confounders z.
• For i-th patient, compute residuals

X̃ij = Xij − E [Xij | zi].

Confounders zi Regression Model Reference
Age Linear Crary et al. (2014)
Age, Gender Linear Koikkalainen et al. (2012)
Brain volume Linear Salakhutdinov and Mnih (2008)
Imaging site Linear Fortin, Cullen, et al. (2018)
Imaging site, Scanner,
Magnetic field strength

Linear Wachinger et al. (2020)

Age, Gender, TIV,
Scanner

Gaussian process Kostro et al. (2014)
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Inverse Propensity Score Weighting

• Create a balanced pseudo-population by using instance weights wi in the outcome model.
• Instance weights are based on the conditional probability of the outcome given the observed
confounders:

wi = P (yi)
P (yi | zi)

.

Confounders zi Outcome Outcome Model Weight Model Reference
Age Healthy/MCI SVM Logistic reg Linn et al. (2016)
Gender, Imaging site MMSE Gaussian process Gaussian process Rao et al. (2017)
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Identifiability

Identifiability
None of the previous work studied whether causal effects can actually be identified from
observed data!
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Causal Inference From Observational Data

Causal inference from observational data requires a holistic approach (Pearl, 2000):
Define the Causal Graph

Gender Age

Edu U ApoE

TIV Xv
d X t

d
p-Tau Aβ

ADAS

D2D1

What can be Answered? Estimation of Causal Effects

E [ADAS | do(x′
S)]

=Eage,xS̄ ,z [E [ADAS |x′
S , xS̄ , age, z]]
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Causal Question

Causal Question
What is the average causal effect of changes in volume/thickness of a subset of neuroanatomical
structures on the ADAS13 score in patients with an Alzheimer’s pathologic change?

Gender Age

Edu U ApoE

TIV Xv
d Xt

d p-Tau Aβ

ADAS

D2D1

Effect of interest

Xv
d Subcortical volume

Xt
d Cortical thickness

Age Observed Confounder

U Unobs. Confounder
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Non-Identifiability Due to Unobserved Confounding

• Average causal effect of a subset S ⊂ {X1, . . . , XD} of
neuroanatomical structures on the ADAS score:

E
[
ADAS | do(XS = x′

S)
]

=
∫

adas · P (adas | do(x′
S))P (adas | do(x′
S)) dadas.

• Identifiability: Can the post-intervention distribution be
estimated from the observed joint distribution over X and
ADAS?

• Answer: NO!
Because of unobserved confounding due to U (Pearl, 2000).

Gender Age

Edu U ApoE

TIV Xv
d Xt

d p-Tau Aβ

ADAS

D2D1
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Estimating a Substitute Confounder

• Due to unobserved confounding, we have to
make assumptions on the
data-generating process.

• Note that all causes X1, . . . , XD become
conditionally independent, given their
parents:

P (x1, . . . xD |PAX1,...,XD
)

=
D∏
d=1

P (xd |PAX1,...,XD
).

Gender Age

Edu U ApoE

TIV Xv
d Xt

d p-Tau Aβ

ADAS

D2D1
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Substitute Confounder (Wang and Blei, 2019)

• Conditional probability

P (x1, . . . xD |PAX1,...,XD
) =

D∏
d=1

P (xd |PAX1,...,XD
).

has the same form as a probabilistic latent factor model (PLFM).
• Estimate a substitute confounder z for the unobserved confounder via a PLFM.
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Latent Factor Model – PPCA

Probabilistic Principal Component Analysis (Tipping
and Bishop, 1999):
• Represent the D causes in terms of the known causes

fi and the latent substitute confounder zi ∈ RK :

xi ∼ ND(Wzi + Afi, σ2
xID), ∀i = 1, . . . , N.

• Estimate posterior distribution of:
◦ Substitute confounder z,
◦ Loading matrix W,
◦ Coefficients A,
◦ Variance term σ2

x.

K

N
σx zi

A xi fi

wk

σwσA
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Identifiability of the Average Causal Effect

• Proof that using the substitute confounder z in place of the unobserved confounder U ,
P (adas | do(x′

S)) becomes identifiable from observed data.
• Need to eliminate the do-operator by applying rules from do-calculus (Pearl, 2000):

E
[
ADAS | do(x′

S)
]
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Eliminating the do-Operator

Apply the rules of do-calculus (Pearl, 2000, Theorem 3.4.1):

E
[
ADAS | do(x′

S)
]

= Eage,xS̄ ,z
[
E
[
ADAS | do(x′

S), xS̄ , age, z
]]

(1)
R3= Eage,xS̄ ,z

[
E
[
ADAS | do(x′

S), xS̄ , do(ptau), age, z
]]

(2)
R2= Eage,xS̄ ,z

[
E
[
ADAS |x′

S , xS̄ , do(ptau), age, z
]]

(3)
R2= Eage,xS̄ ,z

[
E
[
ADAS |x′

S , xS̄ , ptau, age, z
]]

(4)
= Eage,xS̄ ,z

[
E
[
ADAS |x′

S , xS̄ , age, z
]]

(5)

≈ 1
N

N∑
i=1

Ê
[
ADAS |x′

S ,xi,S̄ , agei, zi
]

(6)
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Estimating the Average Causal Effect

• Is the post-intervention distribution identifiable? Í

• Average causal effect and can be estimated by a Bayesian Linear Beta regression
model (Ferrari and Cribari-Neto, 2004).

E
[
ADAS | do(x′

S)
] ≈ 1

N

N∑
i=1

Ê
[
ADAS |x′

S ,xi,S̄ , agei, zi
]
.

• CAUTION: Depends on several assumptions that are specific to the causal question!
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Assumptions

1. The data-generating process is faithful to the graphical model.
⇒ Untestable.

2. The unknown confounder affects multiple brain regions and not just a single region.
⇒ Confounding due to scanner, imaging protocol, and aging affect the brain as a whole.

3. The PLFM captures all multi-cause confounders.
⇒ Posterior predictive checking.

4. The PLFM estimates the substitute confounder with consistency, i.e., deterministicly, as
the number of causes grows large.
⇒ Holds for a large class of models (Chen et al., 2020).

5. P (xS |PAX1,...,XD
) > 0 for any subset S.

⇒ Holds for PPCA, because conditional distribution is a normal distribution.
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Semi-Synthetic Data

Perform 1,000 simulations for varying strength of confounding:
• 19 regional brain volumes of 11,800 subjects from UK Biobank (Miller et al., 2016).
• Observed confounder: Age.
• Unobserved confounder: Generated (via clustering).
• Outcome: Binary (generated).

Methods:
• Proposed: Uses age-aware PPCA to estimate 5 substitute confounders.
• Regress Out: Only accounts for age.
• Non-causal: Ignores all confounders.
• Oracle: Accounts for observed and unobserved confounder.
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Evaluation on Semi-Synthetic Data
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Alzheimer’s Disease Data

Alzheimer’s Disease Neuroimaging Initiative (Jack, Bernstein, et al., 2008):
• 14 volume and 8 thickness measures of 711 subjects.
• Only include patients with abnormal amyloid biomarkers (Jack, Bennett, et al., 2018).
• Estimate 6 substitute confounders.
• Outcome: ADAS13 (proportion).

Methods:
• Proposed: Uses PPCA to estimate 6 substitute confounders, while accounting for age,
gender, education, TIV.

• Regress Out: Only accounts for age, gender, education, TIV.
• Non-causal: Ignores all confounders.
• CAUTION: Quantitative evaluation is impossible!

S. Pölsterl and C. Wachinger (AI-Med) Estimation of Causal Effects in the Alzheimer’s Continuum 21 of 26



Causal Effects in Alzheimer’s Disease
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Conclusion

1. The causal effect of neuroanatomical measures on cognition
is unidentifiable in the presence on unobserved
confounders.

2. We proved that using the substitute confounder enables
identifiability of the causal effect.

3. We do need to rely on several assumptions . . .
4. Code available at https://github.com/ai-med/

causal-effects-in-alzheimers-continuum.
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