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De Novo Chemical Design

Goal
Find a molecule with certain properties, e.g., an antiviral drug to inhibit SARS-CoV-2 replication.
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De Novo Chemical Design

Goal
Find a molecule with certain properties, e.g., an antiviral drug to inhibit SARS-CoV-2 replication.

Problem
1. The space of molecules is extremely large – in the order of 1033 drug-like molecules.1

2. Molecules are discrete in nature, which prevents the use of gradient-based optimization.

1P. G. Polishchuk et al. (2013). “Estimation of the size of drug-like chemical space based on GDB-17 data”. In: Journal of Computer-Aided Molecular Design
27.8, pp. 675–679
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Problem
1. The space of molecules is extremely large – in the order of 1033 drug-like molecules.1

2. Molecules are discrete in nature, which prevents the use of gradient-based optimization.

Solution
Use a deep generative model to project molecules into a continuous latent space and perform
gradient-based optimization there.
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Graph Variational Autoencoder

O

Input G

Encoder Decoder

OH

Output G̃Latent Space z

z ∼ Prior Distribution

Reconstruction Loss L(G, G̃)
Requires solving expensive graph isomorphism problem!
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Prior Work I

Inference (Encoder): Various Graph Convolutional Neural Networks.

Generation (Decoder):
• In a single step using MLP (De Cao and Kipf, 2018; Ma et al., 2018; Simonovsky and Komodakis,

2018).
• Sequentially using RNN (Bradshaw et al., 2019; Jin et al., 2018; Li, Zhang, et al., 2018; Li, Vinyals,

et al., 2018; Liu et al., 2018; Podda et al., 2020; Samanta et al., 2019; You et al., 2018).
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Prior Work II

Generative Models for Molecular Graphs:
• Likelihood-based (VAEs): compute reconstruction loss by (i) traversing nodes in a fixed
order, (ii) Monte-Carlo sampling, or (iii) graph matching.

• Adversarial: MolGAN is the only such model, but cannot do inference (De Cao and Kipf,
2018).

Generative Models for Continuous Data:
• Adversarial Learned Inference (ALI) and its extension ALICE learn an encoder/decoder
without optimizing an explicit reconstruction loss (Dumoulin et al., 2017; Li, Liu, et al.,
2017).

• ALI & ALICE are only applicable to continuous-valued data, such as images.
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Our Contributions

• We propose Adversarial Learned Molecular Graph Inference and
Generation (ALMGIG) that
1. does not require solving an expensive graph isomorphism problem,

2. performs inference over graphs by extending the Graph Isomorphism Network to
multi-graphs (Xu et al., 2019),

3. generates discrete data (atoms and bonds) via the Gumbel-softmax trick (Jang et al.,
2017; Maddison et al., 2017),

4. generates chemically valid molecules by enforcing connectivity constraints via penalty
terms (Ma et al., 2018).

• We show that current evaluation metrics are flawed, and propose a better evaluation
metric to assess the distribution learning capabilities of methods.
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Adversarial Learned Inference
Dumoulin et al. (2017)

O

gφ(G, ε) z̃ ∼ qφ(z |G)z̃ ∼ qφ(z |G)z̃ ∼ qφ(z |G) gθ(z̃, ε) G̃′ ∼ qθ(G | z̃)G̃′ ∼ qθ(G | z̃) Dη(G, G̃′) Dψ(G, z̃)

q(G)q(G)q(G) Encoder Latent space Generator Cycle
Discriminator

Joint
Discriminator

z ∼ N (0, I)z ∼ N (0, I)z ∼ N (0, I) gθ(z, ε) G̃ ∼ qθ(G | z)G̃ ∼ qθ(G | z)G̃ ∼ qθ(G | z) Dη(G,G) Dψ(G̃, z)

• Training: match joint distributions over graphs and latent variables

1. encoder joint distribution: qφ(G, z) =
2. decoder joint distribution: pθ(G, z) = pz(z) qθ(G | z)

• However, reconstruction remains unconstrained.
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Adversarial Learned Inference
ALICE (Li, Liu, et al., 2017)

O

gφ(G, ε) z̃ ∼ qφ(z |G) gθ(z̃, ε) G̃′ ∼ qθ(G | z̃) Dη(G, G̃′) Dψ(G, z̃)

q(G) Encoder Latent space Generator Cycle
Discriminator

Joint
Discriminator

z ∼ N (0, I) gθ(z, ε) G̃ ∼ qθ(G | z) Dη(G,G) Dψ(G̃, z)

• ALICE adds cycle discriminator on pairs of graphs to enforce consistent reconstruction.

• At the optimum, encoder and decoder joint distribution will match, and G̃′ = G.
• However, in practice reaching the optimum is extremely hard.

S. Pölsterl and C. Wachinger (AI-Med) Adversarial Learned Molecular Graph Inference and Generation 8 of 18



Adversarial Learned Inference
ALICE (Li, Liu, et al., 2017)

O

gφ(G, ε) z̃ ∼ qφ(z |G) gθ(z̃, ε) G̃′ ∼ qθ(G | z̃) Dη(G, G̃′) Dψ(G, z̃)

q(G) Encoder Latent space Generator Cycle
Discriminator

Joint
Discriminator

z ∼ N (0, I) gθ(z, ε) G̃ ∼ qθ(G | z) Dη(G,G) Dψ(G̃, z)

• ALICE adds cycle discriminator on pairs of graphs to enforce consistent reconstruction.
• At the optimum, encoder and decoder joint distribution will match, and G̃′ = G.

• However, in practice reaching the optimum is extremely hard.

S. Pölsterl and C. Wachinger (AI-Med) Adversarial Learned Molecular Graph Inference and Generation 8 of 18



Adversarial Learned Inference
ALICE (Li, Liu, et al., 2017)

O

gφ(G, ε) z̃ ∼ qφ(z |G) gθ(z̃, ε) G̃′ ∼ qθ(G | z̃) Dη(G, G̃′) Dψ(G, z̃)

q(G) Encoder Latent space Generator Cycle
Discriminator

Joint
Discriminator

z ∼ N (0, I) gθ(z, ε) G̃ ∼ qθ(G | z) Dη(G,G) Dψ(G̃, z)

• ALICE adds cycle discriminator on pairs of graphs to enforce consistent reconstruction.
• At the optimum, encoder and decoder joint distribution will match, and G̃′ = G.
• However, in practice reaching the optimum is extremely hard.

S. Pölsterl and C. Wachinger (AI-Med) Adversarial Learned Molecular Graph Inference and Generation 8 of 18



Adversarial Learned Inference
Unary Discriminator

O

gφ(G, ε) z̃ ∼ qφ(z |G) gθ(z̃, ε) G̃′ ∼ qθ(G | z̃) Dη(G, G̃′) Dψ(G, z̃)

q(G) Encoder Latent space Generator Cycle
Discriminator

Joint
Discriminator

z ∼ N (0, I) gθ(z, ε) G̃ ∼ qθ(G | z) Dη(G,G) Dψ(G̃, z)

Dξ(G̃)

Unary
Discriminator

Dξ(G)

Match q(G) and qθ(G | z)
Match q(G)qφ(z |G) and pz(z)qθ(G | z)
Match q(G) and qθ(G | z̃)

Unary Discriminator:
Joint Discriminator:
Cycle Discriminator:

• Unary discriminator facilitates training when the joint distribution is difficult to learn.
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Experiments

Data: Molecules from the QM9 dataset (≤9 heavy atoms, 4 atom types, 3 bond types).

Competing Methods
• CGVAE (Liu et al., 2018), NeVAE (Samanta et al., 2019): Graph-based VAE with
RNN-decoder and valence constraints.

• GrammarVAE (Kusner et al., 2017): SMILES-based VAE.
• MolGAN (De Cao and Kipf, 2018): Graph-based WGAN without encoder.
• Random: chooses atom and bonds randomly, but honors valence constraints.
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Simple Metrics are Flawed

• Validity: Percentage of valid molecules.

• Uniqueness: Percentage of unique molecules.

• Novelty: Percentage of unique molecules not in the data.

• Metrics do not capture what models learned from the training data.
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Advanced Metrics

What we are actually interested in:
Can we generate chemically meaningful molecules with similar properties as in the training data?

• Brown et al. (2019) compared the distribution of 10 chemical
descriptors in terms of KL divergence DKL(P ‖ Q).

• We propose using Earth Mover’s Distance (EMD):

EMD KL div

Indiscernibility of identicals 3 3

Symmetry 3 7

Triangle inequality 3 7

Quantify spatial shift 3 7

Non-overlapping supports 3 7
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Comparison – Advanced Metrics
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Comparison – Adversarial Learning Scheme
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Conclusion

1. ALMGIG allows training without computing a reconstructing loss, which would require
solving an expensive graph isomorphism problem.

2. ALMGIG more accurately represents the distribution over the space of molecules
than previous methods.

3. Common validation metrics validity, novelty, and uniqueness are insufficient to properly
assess the performance of methods.

4. Distributions of chemical descriptors provide detailed insight into what type of
molecules a model can generate.

5. Code available at https://github.com/ai-med/almgig
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