Computer Aided Medical Procedures

Automatic Detection of Non-Biological Artifacts in ECGs Acquired During Cardiac Computed Tomography

Rustem Bekmukhametov¹, **Sebastian Pölsterl^{1,†}**, Thomas Allmendinger², Minh-Duc Doan², Nassir Navab^{1,3}

1: Technische Universität München, Munich, Germany

- 2: Diagnostic Imaging & Computed Tomography, Siemens Healthcare GmbH
- 3: Johns Hopkins University, Baltimore MD, USA
- †: Now with The Institute of Cancer Rearch, London, UK

Background: Cardiac CT

- Cardiac computed tomography (CT) is a non-invasive technique to image the beating heart
- To ensure sharp motion-free images, multiple X-ray projections need to be taken at the same cardiac phase
- One of the main concerns during the procedure is the total radiation dose imposed on the patient
- **Trade-off**: image quality vs. total radiation exposure

Background: Prospective ECG Gating

- Radiation is only applied during the target cardiac phase¹
- Uses electrocardiogram (ECG) to determine when to activate X-ray
- Predicts upcoming R peaks

• The cardiac cycle:

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

Background: Prospective ECG Gating

- Radiation is only applied during the target cardiac phase¹
- Uses electrocardiogram (ECG) to determine when to activate X-ray
- Predicts upcoming R peaks

• The cardiac cycle:

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

Background: Prospective ECG Gating

- Radiation is only applied during the target cardiac phase¹
- Uses electrocardiogram (ECG) to determine when to activate X-ray
- Predicts upcoming R peaks

• The cardiac cycle:

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

- A M Y J
- 1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

1. Hsieh et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11), 4236–4248 (2006)

Problem Statement

- Prospective ECG gating relies on correct detection of R peaks
- Noise or non-biological artifacts in the ECG signal may result in false positive R peaks
- May desynchronize the whole workflow and result in a low quality image and the need for a repeat scan
- ECG signals are highly heterogeneous:
 - 1 lead in contrast to 12 leads commonly used for clinical diagnosis
 - Different equipment used
 - Different physicians performing the scan
 - Different technical and professional standards among countries
 - Patients with different medical conditions

Non-Biological Artifacts in ECG (1)

Rotational Noise

- Electrostatic charges close to the patient generate a fake signal due to the gantry rotation
- Noise is eliminated once the X-ray source is activated

 Usually due to an X-ray beam hitting a piece of metal (e.g. if electrodes have been moved inside the scan area)

Table Motion

 High-frequency disturbances after the table starts moving due to patient movement or improper wiring of the electrodes

Non-Biological Artifacts in ECG (2)

Identify cardiac CT scanners producing a high amount of anomalous ECG traces containing non-biological artifacts

Traditional ECG Analysis

- **Traditional ECG analysis** relies on standard ECG features (PQ and ST segment, QRS complex, ...), e.g. for
 - clinical diagnosis: robustness w.r.t. the natural variability of ECG waveforms and heart rhythms
 - human identification: robustness w.r.t. variations across multiple measurements
- Here: The source of noise patterns is almost always independent from the individual and his/her heartbeat characteristics:

robustness to variations across CT scanners, imaging protocols, and individuals and their diseases

Overview

- Localized noise patterns: Affect the ECG signal only within certain, relatively short, time intervals
- Global noise patterns: Tend to contaminate the whole
 signal (not discussed in this talk)

Localized Noise Patterns

- Artifacts of biological origin usually occur during specific cardiac phases and repeat themselves over time
- A technological anomaly occurs independent of a specific cardiac phase, and rarely more than once in the same ECG trace, i.e., it is an outlier
- In severe cases, if R peak detection fails, we observe two consecutive beats with an unusual morphology

Solution: Localized Noise Patterns

- **Discord beat discovery**:²
 - Finds the most unusual cardiac cycle within an ECG signal
- Robust PCA:3
 - Very precise localization of an anomaly at the sub-beat level
 - Allows extracting anomalous structures and reconstructing the "true", noise-free signal

- 2. Keogh et al.: Hot SAX: Efficiently finding the most unusual time series subsequence. In: 5th IEEE Int Conf Data Min. pp. 226–233. (2005)
- 3. Candes et al.: Robust principal component analysis? Journal of the ACM 58(3) (2011)

Discord Beat Discovery

 Split ECG signal into distinct cardiac cycles and compare ECG waveforms using dynamic time warping⁴

Robust PCA

- Particularly useful to detect X-ray artifacts
- Construct matrix *X*, where each row corresponds to a cardiac cycle in the same ECG trace
- Solve $\min_{L,S} ||L||_* + \lambda ||S||_1$ subject to L + S = X

Ensemble of Classifiers

- After feature extraction, we obtain 181 features describing local and global noise patterns
- Remove redundant and irrelevant features based on feature importance retrieved from a random forest⁷
- Aggregate predictions of multiple classifiers via stacking to reduce the bias of the overall system⁸
- Ensemble ought to quantify the overall extent of noise in a given ECG trace

7. Breiman: Random forests. Mach Learn 45(1), 5-32 (2001)

8. Wolpert, D.: Stacked generalization. Neural Netw 5(2), 241–260 (1992)

10-fold Cross-Validation Results

- Data consisted of 2,581 cardiac CT scans (501 with global noise, 391 with localized noise) from 60 medical centers from 18 countries
- Many corrupted ECG signals are subject to multiple artifacts
- A corrupted ECG should not be missed: prefer higher recall over precision

Metric	SVM	RF	Ensemble
mean AUROC	0.996	0.997	0.997
mean AUPRC	0.993	0.994	0.996
mean accuracy	0.973	0.978	0.983
mean precision	0.964	0.979	0.985
mean recall	0.952	0.954	0.964

Acc., prec., and recall have been computed at a threshold of 0.6

10-fold Cross-Validation Results

- Data consisted of 2,581 cardiac CT scans (501 with global noise, 391 with localized noise) from 60 medical centers from 18 countries
- Many corrupted ECG signals are subject to multiple artifacts
- A corrupted ECG should not be missed: prefer higher recall over precision

Metric	SVM	RF	Ensemble
mean AUROC	0.996	0.997	0.997
mean AUPRC	0.993	0.994	0.996
mean accuracy	0.973	0.978	0.983
mean precision	0.964	0.979	0.985
mean recall	0.952	0.954	0.964

Acc., prec., and recall have been computed at a threshold of 0.6

External Validation (1)

- Train system on 2,581 ECG signal used for cross-validation
- Two domain experts independently annotated 150 unseen ECG signals
- Annotations on 5 level Likert scale (1: no artifact, 5: extremely corrupted)
- Inter-expert agreement was high (Kendall's coefficient of concordance W = 0.938)

			Expert 1						
		1	2	3	4	5			
	1	32	21						
t 2	2		23	11	3				
per	3		4	23	6				
Ě	4			3	12				
	5				5	7			

External Validation (2)

	Expert 1	Expert 2	Combined
AUPRC	0.875	0.905	
AUROC	0.898	0.942	
Kendall's W	0.859	0.896	0.863

AUPRC and AUROC have been computed at a threshold of 0.6, where levels 3-5 of experts' annotations were considered as positive class

External Validation (3)

			E	xpert	1			E	xpert	2	
		1	2	3	4	5	1	2	3	4	5
	1	27	32	6	1		45	19	2		
tec	2	3	5	7			5	5	5		
dio	3		5	4				6	3		
Pre	4		2	3	5			5	3	1	1
	5	2	4	17	20	7	3	2	20	14	11

Predicted probabilities have been discretized into 5 equal-sized bins.

External Validation (3)

	Expert 1							Expert 2				
		1	2	3	4	5	1	2	3	4	5	
	1	27	32	6	1		45	19	2			
tec	2	3	5	7			5	5	5			
dio	3		5	4				6	3			
Pre	4		2	3	5			5	3	1	1	
	5	2	4	17	20	7	3	2	20	14	11	

Probabilities are badly calibrated

Predicted probabilities have been discretized into 5 equal-sized bins.

Conclusion

- We presented a system to automatically detect various non-biological anomalies in ECG signals acquired during cardiac CT
- The results demonstrate that our system is highly discriminatory and allows processing thousands of ECGs with minimal human interaction
- Our system is currently deployed at Siemens Healthcare, where it continuously analyzes cardiac CT scans collected from various medical centers all around the world

Thanks for your attention!

Questions?

