## Convolutional Autoencoder as TensorFlow estimator

In my previous post, I explained how to implement autoencoders as TensorFlow `Estimator`

. I thought it would be nice to add convolutional autoencoders in addition to the existing fully-connected autoencoder. So that's what I did. Moreover, I added the option to extract the low-dimensional encoding of the encoder and visualize it in TensorBoard.

The complete source code is available at https://github.com/sebp/tf_autoencoder.

## Why convolutions?

For the fully-connected autoencoder, we reshaped each 28x28 image to a 784-dimensional feature vector. Next, we assigned a separate weight to each edge connecting one of 784 pixels to one of 128 neurons of the first hidden layer, which amounts to 100,352 weights (excluding biases) that need to be learned during training. For the last layer of the decoder, we need another 100,352 weights to reconstruct the full-size image. Considering that the whole autoencoder consists of 222,384 weights, it is obvious that these two layers dominate other layers by a large margin. When using higher resolution images, this imbalance becomes even more dramatic.